
Optimized Skeleton-based Action Recognition via
Sparsified Graph Regression

Xiang Gao
Institute of Computer Science and
Technology, Peking University

gyshgx868@pku.edu.cn

Wei Hu∗
Institute of Computer Science and
Technology, Peking University

forhuwei@pku.edu.cn

Jiaxiang Tang
Institute of Computer Science and
Technology, Peking University

hawkey1999@pku.edu.cn

Jiaying Liu
Institute of Computer Science and
Technology, Peking University

liujiaying@pku.edu.cn

Zongming Guo
Institute of Computer Science and
Technology, Peking University
guozongming@pku.edu.cn

ABSTRACT
With the prevalence of accessible depth sensors, dynamic human
body skeletons have attracted much attention as a robust modality
for action recognition. Previous methods model skeletons based
on RNN or CNN, which has limited expressive power for irregular
skeleton joints. While graph convolutional networks (GCN) have
been proposed to address irregular graph-structured data, the fun-
damental graph construction remains challenging. In this paper,
we represent skeletons naturally on graphs, and propose a graph
regression based GCN (GR-GCN) for skeleton-based action recog-
nition, aiming to capture the spatio-temporal variation in the data.
As the graph representation is crucial to graph convolution, we
first propose graph regression to statistically learn the underlying
graph from multiple observations. In particular, we provide spatio-
temporal modeling of skeletons and pose an optimization problem
on the graph structure over consecutive frames, which enforces the
sparsity of the underlying graph for efficient representation. The
optimized graph not only connects each joint to its neighboring
joints in the same frame strongly or weakly, but also links with
relevant joints in the previous and subsequent frames. We then feed
the optimized graph into the GCN along with the coordinates of the
skeleton sequence for feature learning, where we deploy high-order
and fast Chebyshev approximation of spectral graph convolution.
Further, we provide analysis of the variation characterization by
the Chebyshev approximation. Experimental results validate the
effectiveness of the proposed graph regression and show that the
proposed GR-GCN achieves the state-of-the-art performance on
the widely used NTU RGB+D, UT-Kinect and SYSU 3D datasets.
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1 INTRODUCTION
Action recognition is an active research direction in computer vi-
sion, with widespread applications in video surveillance, human
computer interaction, robot vision, autonomous driving and so on.
Among the multiple modalities [43, 50, 57, 58, 68] that are able
to recognize human action, such as appearance, depth and body
skeletons [7, 33], the skeleton-based sequences are springing up
in recent years, due to the prevalence of affordable depth sensors
(e.g., Kinect) and effective pose estimation algorithms [40]. Skele-
tons convey compact 3D position information of the major body
joints, which are robust to variations of viewpoints, body scales
and motion speeds [13]. Hence, skeleton-based action recognition
has attracted more and more attention [11, 53, 55, 56, 59, 61, 62].

Different frommodalities defined on regular grids such as images
or videos, dynamic human skeletons are non-Euclidean geometric
data, which consist of a series of human joint coordinates. This
poses challenges in capturing both the intra-frame features and
temporal dependencies. Recent methods learn these features via
deep models like recurrent neural networks (RNN) [2, 7, 28, 32,
33, 38, 44, 66, 69] and convolutional neural networks (CNN) [21,
22, 28, 29, 34]. Nevertheless, the topology in skeletons is not fully
exploited in the grid-shaped representation of RNN and CNN.

A natural way to represent skeletons is graph, where each joint is
treated as a node in the graph, and the relationship among the joints
is interpreted by edgeswithweights. As unordered graphs cannot be
fed into RNN or CNN directly, graph convolutional networks (GCN)
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Figure 1: The pipeline of the proposedGR-GCN for skeleton-
based action recognition. Given a sequence of human body
joints, we first learn a common sparsified spatio-temporal
graph over each frame, its previous frame and the sub-
sequent one via graph regression. This leads to a spatio-
temporal graph with strong and physical edges (black solid
lines), strong and non-physical edges (red dashed lines) and
weak edges (green dashed ones) for variation modeling. We
then feed the sparsified spatio-temporal graph into a graph
convolutional network (GCN) alongwith the 3D coordinates
of joints for variation learning, which leads to the output
classification scores.

have been proposed to deal with data defined on irregular graphs
for a variety of applications [3, 6, 8, 24]. Yan et al. [63] and Li et al.
[27] are the first to propose graph-based skeleton representation,
which is then fed into the GCN to automatically learn the spatial
and temporal patterns from data. Tang et al. [48] propose a deep
progressive reinforcement learning (DPRL) method to select the
most informative frames of the input sequences and leverage GCN
to learn the dependency among joints. Bin et al. [26] propose a
spatio-temporal graph routing (STGR) scheme for skeleton-based
action recognition, which learns both the spatial connectivity and
temporal connectivity. However, the graph constructions in these
methods have certain limitations: graphs in [63] are restricted by
small partitions; graphs in [27] only model joints bridged by a
bone; there is no explicit temporal graph in [48]; the computation
complexity of graph learning in [26] is high, and the spatial graph
is built over clusters, each of which is assigned a weight and thus
may not capture delicate pairwise spatial relationship among joints.

Since the graph construction is crucial to graph convolution
in GCNs, we propose a graph regression based GCN (GR-GCN)
model to further improve the graph construction of skeleton data
for stronger expressive power, providing an alternate view of the

action sequence. The problem of learning the underlying graph
structure from data (a.k.a., graph regression) is fundamental and
helps discover the relation among graph signals. In the context
of dynamic skeletons, we provide spatio-temporal modeling of
skeletons and pose an optimization problem on the underlying
graph Laplacian matrix1 over consecutive frames. The optimization
not only enforces the graph Laplacian to capture the structure of
each spatio-temporal frame (i.e., every three consecutive frames),
but also impose the sparsity constraint on the graph for compact
representation. We then obtain the common structure of the graph
Laplacian optimized from multiple observations of spatio-temporal
frames by statistical analysis. The resulting graph not only connects
each joint to its neighboring joints in the same frame strongly or
weakly, but also links with relevant joints in the previous and
subsequent frames.

After learning the common optimal graph for spatio-temporal
frames in a dynamic skeleton sequence, we feed the optimized graph
into the GCN along with the coordinates of the skeleton sequence
for feature learning. We deploy high-order and fast Chebyshev ap-
proximation of spectral graph convolution [6], which leads to final
classification scores. Further, we provide analysis of the variation
characterization by the Chebyshev approximation. We analyze that
the Chebyshev approximation essentially extracts the variation of
the coordinates of joints, which is suitable to learn action features
for final classification. As strong edges in the graph reflect strong
relationship among physical/non-physical connections and weak
edges represent potential relationship among non-physical connec-
tions, the proposed network strengthens learning actions which
are accomplished by joints that are not bridged by bones (i.e., non-
physical connections), such as “drink water" with the interaction
between one hand and the head.

In summary, our contributions include the following aspects:

• We propose efficient graph regression to learn the underly-
ing common graph of spatio-temporal frames in a dynamic
skeleton sequence, by posing an optimization problem on
the graph Laplacian from the constraints of data structure
and sparsity.

• We integrate our graph regressionwith theGCN, and analyze
the variation characterization by the Chebyshev approxima-
tion of spectral graph convolution, which leads to effective
action feature learning.

• We achieve the state-of-the-art performance on the widely
used NTU RGB+D, UT-Kinect and SYSU 3D datasets, and
validate the effectiveness of the proposed graph regression.

The rest of the paper is organized as follows. Sec. 2 reviews
previous works on skeleton-based action recognition and GCNs.
Next, we introduce some basic concepts in spectral graph theory
in Sec. 3. Then, we present the proposed spatio-temporal graph
regression and sparsified graph construction in Sec. 4, and elaborate
on the proposed GR-GCN in Sec. 5. Finally, experimental results
and conclusions are presented in Sec. 6 and Sec. 7, respectively.

1In spectral graph theory [5], a graph Laplacian matrix is an algebraic representation
of the connectivities and node degrees of the corresponding graph, which will be
introduced in Section 3.
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Figure 2: The architecture of the proposed GR-GCN for skeleton-based action recognition. Our proposed network takes a
skeleton sequence as the input, which goes through sequence concatenation and sparsified spatio-temporal graph construc-
tion before feeding into the network. We then employ graph convolution and standard 2D convolution to the concatenated
sequence, followed by feature aggregation via average pooling. Thereafter, a fully-connected layer is utilized to generate the
output classification scores for C classes.

2 RELATEDWORK
2.1 Skeleton-based Action Recognition
Previous skeleton-based action recognition methods can be divided
into 2 classes [63]: hand-crafted feature based methods and deep
learning methods.

Hand-crafted feature based methods. Hand-crafted features
include covariance matrix for skeleton joint locations over time as
a discriminative descriptor [19], modeling human actions as curves
in the Lie group [53], and Spatio-Temporal Naive-Bayes Nearest-
Neighbor [61], etc. However, these methods either lose information
of interactions between specific sets of body parts or depend on
complicated hand-crafted features.

Deep learning methods. Recent methods learn features via
deep learning due to the notable performance, including RNN
[2, 7, 28, 32, 33, 38, 44, 66, 69] and CNN [21, 22, 28, 29, 34]. How-
ever, these methods typically lose structural information when
converting the raw skeleton data into the grid-shaped input of the
neural networks. A natural way to address this issue is to repre-
sent skeleton data on graphs. Yan et al. [63] and Li et al. [27] are
the first to employ GCNs to automatically learn both the spatial
and temporal patterns from data. Specifically, Yan et al. [63] pro-
pose spatial-temporal graph convolutional networks, which can
capture large receptive fields by stacking convolution operators.
However, the relationship among joints in different partitions may
not be well captured due to small partitions. Li et al. [27] design
multi-scale convolutional filters, and simultaneously perform local
convolutional filtering on temporal motions and spatial structures.
For each frame, an undirected graph is constructed, where only
joints bridged by a bone are connected, whereas there is no explicit
temporal connectivity. Tang et al. [48] propose a deep progressive
reinforcement learning (DPRL) method to select the most infor-
mative frames of the input sequences and apply GCN to learn the
spatial dependency between the joints. Edges in the constructed
graph reflect both intrinsic dependencies (i.e., physical connection)
and extrinsic dependencies (i.e., physical disconnection) by differ-
ent weights. Nevertheless, there is no explicit graph construction
in the temporal domain. Bin et al. [26] propose a spatio-temporal
graph routing (STGR) scheme for skeleton-based action recognition,
which learns both spatial connectivity and temporal connectivity.

Nevertheless, the computation complexity of the spatial and tem-
poral graph learning is high.

2.2 Graph Convolutional Neural Networks
According to the definitions of graph convolution, most of these
methods can be divided into two main categories: spectral-domain
methods and nodal-domain methods.

Spectral-domain methods. The convolution over graphs is el-
egantly defined in the spectral domain, which is the multiplication
of the spectral-domain representation of signals. Specifically, the
spectral representation is in the graph Fourier transform (GFT) [12]
domain, where each signal is projected onto the eigenvectors of the
graph Laplacian matrix [12, 14]. The computation complexity, how-
ever, is high due to the eigen-decomposition of the graph Laplacian
matrix in order to get the eigenvector matrix. Hence, it is improved
by [6] through fast localized convolutions, where the Chebyshev
expansion is deployed to approximate GFT. Besides, Susnjara et al.
introduce the Lancoz method for approximation [46]. Spectral GCN
has shown its efficiency in various tasks such as segmentation and
classification [24, 49].

Nodal-domain methods.Many techniques are introduced to
implement graph convolution directly on each node and its neigh-
bors, i.e., in the nodal domain. Gori et al. introduce recurrent neural
networks that operate on graphs in [10]. Duvenaud et al. propose
a convolution-like propagation to accumulate local features [8].
Bruna et al. deploy the multiscale clustering of graphs in convo-
lution to implement multi-scale representation [3]. Furthermore,
Niepert et al. define convolution on a sequence of nodes and perform
normalization afterwards [35]. Wang et al. propose edge convolu-
tion on graphs by incorporating local neighborhood information,
which is applied to point cloud segmentation and classification [60].
Nodal-domain methods provide strong localized filters, but it also
means it might be difficult to learn the global structure.

The abovemethods apply convolutional aggregators in the propa-
gation step. Besides, there are other related works based on different
aggregators, including attention aggregators [52], which incorpo-
rate the attention mechanism [51] into the propagation step, aiming
to compute the hidden states of each node by attending over its
neighbors; and gate aggregators [30, 31, 36, 47, 65, 67], which use
the gate mechanism like GRU [4] or LSTM [15] in the propagation
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step to improve the long-term propagation of information across
the graph structure.

3 PRELIMINARIES
We consider an undirected graph G = {V, E,A} composed of
a node set V of cardinality |V| = n, an edge set E connecting
nodes, and a weighted adjacency matrix A. A is a real symmetric
n × n matrix, where ai, j is the weight assigned to the edge (i, j)
connecting nodes i and j. We assume non-negative weights, i.e.,
ai, j ≥ 0.

The Laplacian matrix, defined from the adjacency matrix, can be
used to uncover many useful properties of a graph. Among different
variants of Laplacian matrices, the combinatorial graph Laplacian
used in [18, 39] is defined as

L = D − A, (1)

where D is the degree matrix—a diagonal matrix where di,i =∑n
j=1 ai, j . We will optimize L in the proposed graph regression

method in Sec. 4. Further, the symmetric normalized Laplacian is
defined as L = D− 1

2 LD− 1
2 , which will be deployed in the GCN so

as to avoid numerical instabilities.
Graph signal refers to data that resides on the nodes of a graph,

such as social, transportation, sensor, and neuronal networks. In
our context, we treat each joint in a skeleton sequence as a node in a
graph, and define the corresponding graph signal as the coordinates
of each joint.

4 DYNAMIC SKELETON MODELING
The fundamental of skeleton-based action recognition is to capture
the variation of joints both in the spatial and temporal domain, so
as to learn motion features for classification. We propose spatio-
temporal graph regression modeling for dynamic skeletons, and
come up with the optimization of the underlying graph so as to
characterize the variation.

4.1 Spatio-temporal Graph Regression
Modeling of Skeletons

Let xt ∈ Rn×3 be the coordinate signal in one frame at time t ,
where n is the number of joints in each skeleton. We define a
spatio-temporal frame as x = [xt−1, xt , xt+1]⊤ ∈ R3n×3, i.e., three
consecutive frames are concatenated. We then represent x on a
spatio-temporal graph described by L, which models the correlation
among joints.

We formulate the graph regression problem as the optimization
of the graph Laplacian L:

min
L

tr(x⊤Lx) + β ∥L∥2F ,

s.t. tr(L) = 3n,
Li, j = Lj,i ≤ 0, i , j,

L · 1 = 0,

(2)

where β is a weighting parameter, and 1 and 0 denote the constant
one and zero vectors. In addition, tr(·) and ∥ · ∥F denote the trace
and Frobenius norm of a matrix, respectively. The first term in
the objective function aims to fit the graph structure to the data
by minimizing the total variation of the input signal (discussed

soon), while the second term enforces the sparsity of the underlying
graph to extract major correlations among joints and thus avoid
over-fitting. The constraints ensure that the learned L satisfies the
properties of the desired graph Laplacian: normalized, symmetry,
non-negativity of edge weights, and the zero row sum. Next, we
discuss the variation characterization by L.

The quadratic term x⊤Lx in Eq. (2) describes the total variation.
This is because x⊤Lx can be written as [45]:

x⊤Lx =
∑
i∼j

ai, j (xi − x j )2, (3)

where i ∼ j denotes two nodes i and j are one-hop neighbors in the
graph. Hence, x⊤Lx computes the total variation among connected
nodes in x. By minimizing this term in Eq. (2), we enforce the
edge weight between a pair of nodes with different features to be
small, while allowing for a large edge weight between a pair of
similar nodes. Thus, the optimized graph is able to characterize the
variation in the skeleton data.

The optimization problem in Eq. (2) is convex and thus can be
solved optimally, which leads to the learned graph for one given
observation of x. In order to acquire a spatio-temporal graph that
captures the common structure of skeleton sequences, we propose
to solve Eq. (2) over multiple observations of x, and then statisti-
cally compute the common structure. For the purpose of succinct
representation, we further restrict the connectivities of the common
graph spatially and temporally, as discussed in the following.

4.2 Sparsified Graph Construction
The graph construction includes spatial connectivity and temporal
connectivity.

Spatial connectivity.Within each frame, we model the human
body via a connected graph, based on two types of connectivities
in particular: strong connections Es and weak connections Ew for
describing different correlations. Strong connections aim to capture
strong correlations with large weights to emphasize the variation,
including physical connectivity and some physical disconnection
among joints, while weak connections are used to represent poten-
tial correlations among joints that are not physically connected. In
particular, different weights are assigned to strong and weak edges,
i.e., edge weights within a frame are set as

ai, j =


w1, (i, j) ∈ Es
w2, (i, j) ∈ Ew
0, otherwise,

(4)

wherew1 > w2.
Temporal connectivity. Unlike previous works where each

joint is disconnected in the temporal domain or only connected
to its corresponding joints in the adjacent frames in general, we
allow connecting each joint in frame xt to the neighborhood of its
correspondence in the previous frame xt−1 and subsequent frame
xt+1, which are referred to as potential edges, as shown in Fig. 3.
This is to capture the latent variation between one joint in frame
xt and its neighboring joints in the adjacent frames. The receptive
field in the temporal domain is thus enlarged by exploiting more
neighboring joints, which contributes to learning the temporal
variation.
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Figure 3: Illustration of the learned graph construction.
We learn a common structure of the spatio-temporal
graph for spatio-temporal frames (i.e., every three adjacent
frames). The yellow, blue, and red groups include three adja-
cent frames respectively, containing intra-frame connectiv-
ities (gray-dotted lines) and inter-frame connectivities (red-
dotted). Connectivities are simplified for clear visualization.

Similar with the edge weights for the spatial connectivity, we
define two types of temporal connectivities: the connectivity for
corresponding joints, denoted as Ec , and the connectivity between
each joint and the neighborhood of its correspondence in the ad-
jacent frames, denoted as En . We assign w1 to edges in Ec , and
assignw2 to edges in En .

4.3 Final Graph Modeling
Based on the above restriction of spatial and temporal connectivi-
ties, we extract the common structure of the optimized graph Lapla-
cian learned from multiple observations of spatio-temporal frames.
Specifically, we first randomly takem spatio-temporal frames from
different classes of skeleton sequences, each of which serves as
x in Eq. (2). Then we obtain the optimal spatio-temporal graph
Laplacian for each spatio-temporal frame from Eq. (2), leading tom
optimized graph Laplacian {Llopt}ml=1. Next, we derive a common
graph Laplacian L from the statistics of {Llopt}ml=1.

Specifically, we first obtain common graph connectivities: we
keep all the edges for physical connections as a part of common con-
nectivities; for the remaining edges, we choose connections with
highest frequencies of occurrence in {Llopt}ml=1 as common connec-
tivities. We determine strong/weak connections by thresholding the
learned edge weights. Specifically, we count the top-9 frequently
occurring edges (except physical connections) from {Llopt}ml=1, set
the top-5 among the 9 edges as strong connections, and the rest as
weak connections. Regarding strong and weak edge weightsw1 and
w2, we calculate the ratio r of the average value of physical edge
weights to the average of non-physical edge weights in{Llopt}ml=1,

which is used to approximate w1
w2

. As the relative value of edge
weights is essential, we setw1 = r andw2 = 1.

5 THE PROPOSED GR-GCN
We now overview the architecture of the proposed GR-GCN. Then
we discuss the corresponding graph convolution and feature learn-
ing in detail.

5.1 GR-GCN architecture
As illustrated in Fig. 2, the input is a skeleton-based action sequence
organized as a P×T0×N0×3 tensor, where P is the number of actors
in each sequence, T0 is the number of frames, N0 is the number of
joints in each frame, and 3 means the dimension of x , y, z coor-
dinates. In order to exploit the spatio-temporal dependencies, we
firstly concatenate the input sequence in the unit of 3 consecutive
frames, e.g., the {1, 2, 3}th frames are concatenated into the first
spatio-temporal frame, and the {2, 3, 4}th frames into the second
one, etc. Thus, the sequence length is changed to T1, and the num-
ber of joints in each frame is N1 after frame concatenation, where
T1 = T0 − 2 and N1 = N0 × 3. We then perform the proposed graph
regression, which leads to the learned graph Laplacian of a common
spatio-temporal graph. Secondly, we feed a feature matrix contain-
ing the coordinates of skeleton joints in the concatenated sequence
and the graph Laplacian into the designed graph convolution layer
and standard 2D convolution layers for feature extraction. Average
pooling is then employed for feature aggregation. Finally, the global
feature matrix will go through a fully connected layer followed by
a Softmax activation function to output the classification score for
C classes. Also, batch normalization is used for all layers before the
ReLU activation function.

5.2 Spatio-Temporal Graph Convolution
Following the definition of graph convolution in [6], we adopt the
approximation of spectral convolution by Chebyshev polynomials
for efficient implementation:

дθ ∗ x ≈
K−1∑
k=0

θkTk (L)x, (5)

where L = D− 1
2 LD− 1

2 is the symmetric normalized graph Lapla-
cian as defined in Sec. 3, which is employed because the domain of
Chebyshev polynomials lies in [−1, 1]. θk denotes the k-th Cheby-
shev coefficient and дθ denotes a convolution kernel. Tk (L) is the
Chebyshev polynomial of order k . It is recurrently calculated by
Tk (L) = 2LTk−1(L) − Tk−2(L), where T0(L) = 1,T1(L) = L.
When k > 1, Lk essentially describes k-hop connectivities, thus
incorporating more neighbors and leading to convolution over a
larger receptive field.

We provide analysis of the variation characterization by the
above Chebyshev approximation. As discussed in [41], the graph
Laplacian matrix L is essentially a high-pass operator which cap-
tures the variation in the underlying signal. For any signal x, it
satisfies

(Lx)(i) =
∑
j ∈Ni

ai, j (xi − x j ), (6)
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where (Lx)(i) denotes the i-th component of Lx. Ni is the set of
nodes connected to i . This presents that when operating L on x, for
each node, it computes the signal difference among the node and
its one-hop neighbors. In other words, Lx captures the variation
in x. Similarly, Lkx captures the variation between each node and
its k-hop neighbors. Thus, the approximated graph convolution
seamlessly enables learning the variation in a skeleton sequence.
This also sheds light on why graph convolution works for action
recognition.

5.3 Feature Learning
Having designed the spatio-temporal graph convolution, we define
the transfer function as follows:

y = ReLU(
K−1∑
k=0

Tk (L)xWk + b), (7)

whereWk ∈ RF1×F2 is a matrix of weight parameters θk as in Eq. 5,
which will be learnt from the network, and F1, F2 are the dimensions
of generated features in two connected layers respectively. b ∈
Rn×F2 is the bias, while ReLU is an activation function.

After the graph convolution layer, we employ standard 2D convo-
lution to the output y, followed by feature aggregation via average
pooling. Thereafter, a fully-connected layer and a Softmax acti-
vation function are adopted to generate the output classification
scores. We adopt the categorical cross-entropy loss to train the
network. The implementation details will be discussed in Sec. 6.2.

6 EXPERIMENTS
We evaluate our proposed GR-GCN on four widely used datasets
and compare with state-of-the-art skeleton-based action recogni-
tion methods. Experimental details and results are discussed below.

6.1 Datasets and Evaluation Metrics
NTU RGB+D Dataset [38]: This dataset was captured from 40 hu-
man subjects by 3 Microsoft Kinect v2 cameras. It consists of 56880
action sequences with 60 classes. Actions 1-49 were performed by
one actor, and actions 50-60 were performed by two actors. Each
body skeleton was recorded with 25 joints. The benchmark evalua-
tions include Cross-Subject (CS) and Cross-View (CV). In the CS
evaluation, 40320 samples from 20 subjects were used for training,
and the other samples for testing. In the CV evaluation, samples
captured from camera 2 and 3 were used for training, while samples
from camera 1 were employed for testing.

Florence 3D Dataset [37]: This dataset contains 215 action
sequences of 10 actors with 9 classes. Each body skeleton was col-
lected from Kinect, and recorded with 15 joints. We follow the
standard experimental settings to perform leave-one-actor-out val-
idation protocol: we use all the sequences from 9 out of 10 actors
for training and the remaining one for testing, and repeat this pro-
cedure for all the actors. The resulting 10 classification accuracy
values are averaged to get the final accuracy.

UT-Kinect Dataset [62]: This dataset was captured using a
single stationary Kinect. It consists of 200 sequences with 10 classes,
and each skeleton includes 20 joints. The dataset was recorded by
three channels: RGB, depth, and skeleton joint locations, whereas
we only use the 3D skeleton joint coordinates. We also adopt the

leave-one-actor-out validation protocol to evaluate our model on
this dataset.

SYSU 3D Dataset [16]: On this dataset, 40 actors were asked
to perform 12 different activities. Therefore, there are totally 480
action videos on this dataset. For each video, the corresponding
RGB, depth, and skeleton information were captured by a Kinect.
We use the skeleton sequences performed by 20 actors for training,
and the remaining 20 actors for testing.We employ the 30-fold cross-
subject validation and report the mean accuracy on the dataset.

6.2 Implementation Details
Our proposed model was implemented with the PyTorch2 frame-
work. The number of actors P is set to be 2, 1, 1, 1 for NTU RGB+D,
Florence 3D, UT-Kinect, and SYSU 3D dataset respectively. We learn
the edge weight ratio r = 5 for the four datasets, i.e.,w1 = 5,w2 = 1.

Basic Model: Prior to the graph convolution layer, we set a
Batch Normalization layer for the batched input data in order to
be less careful about data initialization and speed up the training
process [20]. In the graph convolution layer, we set the Chebyshev
orderK to be 4, and the dimension of the weight matrixWk in Eq. 7
to be 3n × 3n (i.e., the same as the spatio-temporal Laplacian matrix
L). The Multi-Convolution Layer consists of 2 standard CNN layers.
Each convolution layer follows a Batch Normalization layer. We
choose ReLU as the activation function after each convolution layer,
and assign the dropout rate 0.5.

Deep Stacking: The above convolutional model can be easily
extended into a deep architecture. Taking the above model as one
basic layer, we stack it into a multi-layer network architecture, in
which the output at the previous layer is used as the input of the
next layer. Here, we stack it into a 10-layer architecture. In this
architecture, we appropriately adjust the kernel size so as to acquire
the final output feature of dimensionM2 = 256 for each point. With
the increase of layers, the receptive field of convolutional kernels
become larger, thus enabling abstracting more global information.

Next, we employ three average pooling layers to pool the P , N ,
and T dimension respectively, followed by a fully connected layer
and a Softmax activation function to output the final classification
score. The number of neurons depends on the output channel of
the last convolution layer of the network. We apply Adam [23]
optimizer to train the whole model with the initial learning rate
0.1, and decrease it on the 10th epoch.

6.3 Data Preprocessing
NTU RGB+D Dataset: Due to some missing skeletons in this
dataset, we only use the cleaned data3 for action recognition [25].
In order to enhance the robustness of model training, we split the
sequences into several segments of equal size in a way similar to
[27]. Specifically, we split the whole sequence into 32 segments,
and pick the {1, 2, 3, 4}th frame respectively from each segment to
generate a large amount of training data.

Florence 3D Dataset: Since the sequences in this dataset con-
tain few frames, we design two ways to generate the training set:
sampling and interpolation. For longer sequences (i.e., the length
of the sequence is greater than 32), we randomly choose 32 frames;

2https://pytorch.org
3https://github.com/InwoongLee/TS-LSTM
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for the other sequences, we calculate the mean of two adjacent
frames and insert it into the sequence as a new frame, eventually
forming a sequence of 32 frames. For all the sequences, we repeat
this operation 3 times to generate the training set.

UT-Kinect Dataset: We also adopt sampling and interpolation
methods to generate the training set. Here, we set the length of
each training sequence to be 64, and repeat the process twice.

SYSU 3D Dataset: Similar to the NTU RGB+D dataset, we split
each sequence into 32 segments, and pick the {1, 2, 3, 4, 5}th frame
from each segment to generate the training set. However, this
dataset does not provide node labels, hence we only adopt the
adjacency matrix of physical connections provided by the author
as the graph within each frame.

6.4 Results on NTU RGB+D Dataset
As reported in Tab. 1, our model achieves accuracy of 87.5% in
CS and 94.3% in CV respectively. Also, as will be discussed in the
ablation study, the proposed intra-connections improve the per-
formance by 0.7% in CS and 1.4% in CV over the baseline method
(GR-GCN+Bone), while the proposed temporal connectivities lead to
3.2% gain in CS and 3.1% gain in CV, thus validating the effectiveness
of our method.

Comparison with the State-of-the-arts:We present the com-
parison with the state-of-the-art methods in Tab. 1. We see that our
method outperforms all the other state-of-the-art methods. Specifi-
cally, compared with the latest state-of-the-art method STGR-GCN
[26], our model leads to 0.6% gain in CS and 2.0% gain in CV respec-
tively, which demonstrates the superiority of our method.

Ablation Study: In order to validate the advantages of the pro-
posed spatio-temporal graph construction in our method, we eval-
uate various graph construction methods progressively and design
the following incomplete models. Model 1 is GR-GCN (Bone only),
in which only joints connected with a bone are linked with graph
edges. This kind of graph construction is commonly used in ex-
isting graph-based skeleton recognition [27, 48, 63], and thus is
the baseline. Model 2 is GR-GCN (Bone + Intra-connection) (non-
physical), where connectivities are further added to joints that are
not physically connected within each frame, including strong and
weak edges for capturing latent dependencies. This kind of connec-
tivities are previously exploited in [48]. Model 3 is our complete
model with extra temporal connections included. We observe that
Model 1 already achieves competitive performance with the state-
of-the-art methods, which shows the effectiveness of the proposed
GR-GCN. With additional intra-connectivities, Model 2 improves
the accuracy by 0.7% in CS and 1.4% in CV over Model 1, validating
the benefits of non-physical connections. Further, when the tem-
poral connections are exploited, the complete model achieves 2.5%
gain in CS and 1.7% gain in CV over Model 2. We thus conclude
that both the proposed non-physical intra-connectivities and the
explicit temporal connections make contributions to skeleton-based
action recognition, in which the temporal connectivities are more
crucial.

6.5 Results on SYSU 3D Dataset
We compare our method with the state-of-the-art skeleton-based ac-
tion recognition methods on SYSU 3D Dataset, which are presented

Table 1: Comparisons on the NTU RGB+D dataset (%).
Methods CS CV Year

Dynamic Skeletons [16] 60.2 65.2 2015
Part-aware LSTM [38] 62.9 70.3 2016

Geometric Features [66] 70.3 82.4 2017
LSTM-CNN [28] 82.9 91.0 2017

Two-Stream CNN [29] 83.2 89.3 2017
ST-LSTM (Tree)+Trust Gate [32] 69.2 77.7 2018

Deep STGCK [27] 74.9 86.3 2018
ST-GCN [63] 81.5 88.3 2018

DPRL [48] 83.5 89.8 2018
SR-TSL [42] 84.8 92.4 2018

STGR-GCN [26] 86.9 92.3 2019
GR-GCN (Bone only) 84.3 91.2

GR-GCN (Bone + Intra-connection) 85.0 92.6
Complete GR-GCN model 87.5 94.3

in Tab. 2. Our proposed method outperforms all the other state-of-
the-art methods on this dataset, achieving accuracy improvement
of 1.0% over the previous best method DPRL [48].

Note that, as node labels are not provided by this dataset, we
can only build strong physical connections from the given adja-
cency matrix within each frame while abandoning weak edges.
Hence, we provide ablation study with Model 1 in Tab. 2. We see
that our complete model achieves 2.7% improvement over the base-
line method. This validates the benefits of incorporating explicit
temporal connectivities across consecutive frames again.

drinking 13 6 1

pouring 17 1 2

calling phone 1 19

playing phone 16 4

wearing backpacks 1 18 1

packing backpacks 1 15 2 2

sitting chair 19 1

moving chair 1 18 1

taking out wallet 19 1

taking from wallet 1 1 5 13

mopping 15 5

sweeping 1 5 14

Figure 4: Confusion matrix of GR-GCN on SYSU 3D dataset.

Also, the confusion matrix of our result is demonstrated in Fig. 4.
We see that the matrix is diagonally dominant on all the 12 classes,
which validates that our method achieves excellent classification
results on this dataset. Besides, we note that our model sometimes
confuses the activity of “mopping" with “sweeping", which is mainly
due to the highly similar motions in the two actions.

6.6 Results on UT-Kinect Dataset
As listed in Tab. 3, our method achieves comparable accuracy of
98.5% to [48], and outperforms all the other methods. Note that the
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Table 2: Comparisons on the SYSU 3D dataset (%).
Methods Accuracy Year

Dynamic Skeletons [16] 75.5 2015
LAFF (SKL) [17] 54.2 2016

ST-LSTM (Tree) [32] 73.4 2018
ST-LSTM (Tree) + Trust Gate [32] 76.5 2018

DPRL [48] 76.9 2018
GR-GCN (Bone only) 75.2

Complete GR-GCN model 77.9

Table 3: Comparisons on the UT-Kinect dataset (%).
Methods Accuracy Year

Lie Group [53] 97.1 2014
LARP+mfPCA [1] 94.9 2015

SPGK [59] 97.4 2016
ST-NBNN [61] 98.0 2017
Bi-LSTM [2] 96.9 2018

ST-LSTM(Tree) + Trust Gate [32] 97.0 2018
DPRL [48] 98.5 2018

GR-GCN (Bone only) 96.9
GR-GCN (Bone + Intra-connection) 97.4

Complete GR-GCN model 98.5

performance difference among all the methods is rather small in
general. The reason is that this dataset includes several very similar
actions, which are difficult to distinguish without RGB or depth
data.

Also, we perform the same ablation study as in Sec. 6.4, as re-
ported in Tab. 3. We observe that Model 2 improves the accuracy
by 0.5% over Model 1 with additional intra-connectivities. Further,
when the temporal connectivities are built, the complete model
achieves 1.1% improvement over Model 2, which demonstrates the
advantages of the proposed spatio-temporal graph construction.

6.7 Results on Florence 3D Dataset
We present the performance comparison with the state-of-the-art
methods on the Florence 3D dataset in Tab. 4. Our method achieves
classification accuracy of 98.5%, outperforming all the other state-
of-the-art methods significantly except Deep STGCK [27]. The
reason is that Deep STGCK benefits from the design philosophy of
autoregressive moving average model, which is tailored for time
sequences. Due to the few joints in each frame and few frames in
the sequence, our model is difficult to capture subtle variation from
few joints. Thus we misclassify “drink from a bottle" and “answer
phone", “read watch" and “clap", which is difficult to distinguish
even with human vision.

Moreover, Tab. 4 reports the results of ablation study. We achieve
0.1% improvement from non-physical intra-connections compared
withGR-GCN (Bone only), and another 2.8% improvement from tem-
poral connections comparedwithGR-GCN (Bone + Intra-connection).
This validates the effectiveness of the proposed graph construction,
in which the temporal connectivities are vital.

Table 4: Comparisons on the Florence 3D dataset (%).
Methods Accuracy Year

Lie Group [53] 90.9 2014
LARP+mfPCA [1] 89.7 2015

Rolling Rotations [54] 91.4 2016
SPGK [59] 91.6 2016

Transion Forests [9] 94.2 2017
MIMTL [64] 95.3 2017
Bi-LSTM [2] 93.0 2018

Deep STGCK [27] 99.1 2018
GR-GCN (Bone only) 95.5

GR-GCN (Bone + Intra-connection) 95.6
Complete GR-GCN model 98.4

Figure 5: Classification accuracy on different Chebyshev or-
ders.

6.8 Analysis on Chebyshev Orders
We explore the effects of different Chebyshev polynomial orders on
our complete GR-GCN model, as demonstrated in Fig. 5. When K =
1, graph convolution defaults to a fully connected layer according
to Eq. (5), thus becoming the baseline with only traditional CNNs.
The performance is inferior to those with larger K (corresponding
to graph convolution with (K − 1)-hop neighborhood) in general,
thus validating the effectiveness of graph convolution. Further,
our model achieves the best performance when K = 4 for all the
datasets, thus validating the choice of K in the experimental setting.
In contrast, the performance with K = 5 drops, because a wide
range of neighbors will be incorporated, which is unable to capture
the local variation well and may lead to overfitting.

7 CONCLUSION
We propose a graph regression based GCN (GR-GCN) for skeleton-
based action recognition, aiming to fully exploit both spatial and
temporal dependencies among human joints. As the graph represen-
tation is crucial to graph convolution, we propose graph regression
to optimize the underlying graph over multiple observations of
spatio-temporal frames, and then statistically learn the common
sparsified graph representation. We then feed the learned spatio-
temporal graph into the GCN with spectral graph convolution
approximated by high-order Chebyshev polynomials for feature
extraction. Extensive experiments demonstrate the superiority of
our method.
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